THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT5000 Analysis I (Fall 2015)
 Makeup Quiz 1

1. (a) Suppose that A and B are nonempty subsets of \mathbb{R} such that $a<b$ for all $a \in A$ and $b \in B$. Prove that $\sup A \leq \inf B$.
(b) Suppose that S is a nonempty subset of \mathbb{R} which is bounded above. Define

$$
-S=\{-s \in \mathbb{R}: s \in S\}
$$

Prove that $\inf (-S)$ exists and $\inf (-S)=-\sup S$.
(c) Give an example of nonempty subsets $A_{n} \subset \mathbb{R}, n \in \mathbb{N}$ such that $A_{i} \cap A_{j}$ is nonempty for any $i \neq j$, but $\bigcap_{n=1}^{\infty} A_{n}$ is empty.
2. Suppose that $\left\{x_{n}\right\}$ is a sequence of real numbers such that $0<x_{n}<1$ for all $n \in \mathbb{N}$.

Define $A=\bigcup_{n=1}^{\infty}\left(\frac{x_{n}}{n}, x_{n}\right)$.
(a) Show that A is bounded.
(b) Show that $\inf A=0$ and $\sup A=\sup \left\{x_{n}: n \in \mathbb{N}\right\}$.
3. Let $S=\left\{\frac{m}{n+\sqrt{2}}: m, n \in \mathbb{Z}\right\}$.

Show that S is a dense subset of \mathbb{R}, i.e. for all real numbers $x, y \in \mathbb{R}$ with $x<y$, there exists $s \in S$ such that $x<s<y$.
4. (a) State without proof of the Nested Interval Property.
(b) Suppose $I_{n}, n \in \mathbb{N}$ is a nested sequence of closed bounded intervals.
(i) Prove that $I_{3 n}$ is a nested sequence of closed bounded intervals.
(ii) Suppose that there exists unique $\xi \in \mathbb{R}$ such that $\xi \in I_{3 n}$ for all $n \in \mathbb{N}$. Show that there exists unique $\xi \in I_{n}$ for all $n \in \mathbb{N}$.

